
Coreboot Tutorial
...as used in Chrome OS

(YMMV)

Presented at OSCON 2013 http://goo.gl/jsE8EE

http://goo.gl/jsE8EE
http://goo.gl/jsE8EE

Agenda
(Don't panic - not every section is of equal length)

Intro / Background
Chrome OS Firmware
Development System
Preparing a Test System
Hands On
What Next?

Who are we?

● Ron Minnich
○ Started LinuxBIOS in 1999, been working on it since.

Knows everything. Couldn't be here today.
● Stefan Reinauer

○ Renamed the project to Coreboot in 2008, been
working on it since 2001. Knows almost everything.

● Bill Richardson
○ Was just going to watch, until Ron backed out. Not

the former Governor of New Mexico. Hi.

We work for Google, but don't speak for them. All opinions are our own.

What is coreboot?

● http://www.coreboot.org
● A Free Software (GPLv2) project to replace

the proprietary BIOS in modern computers.
● Originally intended for clusters, now used all

over the place.
● It performs just a little bit of hardware

initialization and then executes a payload.
● Lots of possible payloads: Linux kernel,

GRUB2, Open Firmware, Etherboot/GPXE,
SeaBIOS, ...

http://www.coreboot.org/
http://www.coreboot.org/

What is Chrome OS?

● "A fast, simple, and more secure computing
experience for people who spend most of
their time on the web." http://www.google.
com/chromeos

● Chrome OS is only available on hardware.
● But Chromium OS is the open source

project, with code available to anyone. http:
//www.chromium.org

● We'll take advantage of that today...

http://www.google.com/chromeos
http://www.google.com/chromeos
http://www.google.com/chromeos
http://www.chromium.org
http://www.chromium.org
http://www.chromium.org

Coreboot in Chrome OS

● The first three Chromebooks used a
proprietary BIOS, based on UEFI.

● The newer x86-based Chromebooks use
Coreboot, with U-Boot as a payload.

● ARM-based Chromebooks use only U-Boot.

Why coreboot?

● Duncan Laurie is a Chrome OS engineer
who presented at Linux Conf AU earlier this
year

● His slides are better than mine, so I'm going
to quote them...

● http://bit.ly/chromefw to see the rest

http://bit.ly/chromefw
http://bit.ly/chromefw

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Duncan Laurie, at linux.conf.au 2013:

Agenda

Intro / Background
Chrome OS Firmware
Development System
Preparing a Test System
Hands On
What Next?

Verified Boot

● Part of the BIOS flash is read-only
● The read-only BIOS runs first*
● The read-only BIOS verifies the read-write

BIOS, then executes it
● The read-write BIOS verifies the kernel, then

executes it
● The kernel verifies the rootfs as each block

comes off the drive.
● If anything fails, it reboots into Recovery

mode (read-only BIOS again).
*Okay, the ME runs before the BIOS gets a chance. But that's a separate thing.

Coreboot

● Coreboot is the first part of the read-only
BIOS

● Its payload is U-Boot, which does the
verification of the read-write BIOS

● The read-write BIOS is just U-Boot (but that's
changing)

● Because it's read-only:
○ It can't be updated
○ It had better work
○ Playing with it is tricky and dangerous
○ Hence this class...

Duncan Laurie, at linux.conf.au 2013:

FMAP

● https://code.google.com/p/flashmap
● This is just a way of identifying various

sections in a ROM image.
● We have a number of different sections in

the Chrome OS BIOS
● You don't have to know anything about

them, but it helps, especially if you want to
hack on coreboot for Chrome OS, not just
coreboot by itself

● They're not always 100% correct, though.

https://code.google.com/p/flashmap
https://code.google.com/p/flashmap

$ dump_fmap -h link_bios.rom
name start end size
SI_BIOS 00200000 00800000 00600000
 WP_RO 00600000 00800000 00200000
 RO_SECTION 00610000 00800000 001f0000
 BOOT_STUB 00700000 00800000 00100000
 GBB 00611000 00700000 000ef000
 RO_FRID_PAD 00610840 00611000 000007c0
 RO_FRID 00610800 00610840 00000040
 FMAP 00610000 00610800 00000800
 RO_UNUSED 00604000 00610000 0000c000
 RO_VPD 00600000 00604000 00004000
 RW_LEGACY 00400000 00600000 00200000
 RW_UNUSED 003fe000 00400000 00002000
 RW_VPD 003fc000 003fe000 00002000
 RW_ENVIRONMENT 003f8000 003fc000 00004000
 RW_SHARED 003f4000 003f8000 00004000
 VBLOCK_DEV 003f6000 003f8000 00002000
 SHARED_DATA 003f4000 003f6000 00002000
 RW_ELOG 003f0000 003f4000 00004000
 RW_MRC_CACHE 003e0000 003f0000 00010000
 RW_SECTION_B 002f0000 003e0000 000f0000
 RW_FWID_B 003dffc0 003e0000 00000040
 EC_RW_B 003c0000 003dffc0 0001ffc0
 FW_MAIN_B 00300000 003c0000 000c0000
 VBLOCK_B 002f0000 00300000 00010000
 RW_SECTION_A 00200000 002f0000 000f0000
 RW_FWID_A 002effc0 002f0000 00000040
 EC_RW_A 002d0000 002effc0 0001ffc0
 FW_MAIN_A 00210000 002d0000 000c0000
 VBLOCK_A 00200000 00210000 00010000
SI_ALL 00000000 00200000 00200000
 SI_ME 00001000 00200000 001ff000
 SI_DESC 00000000 00001000 00001000
$

$ dump_fmap -h parrot_bios.rom
name start end size
SI_BIOS 00200000 00800000 00600000
 WP_RO 00400000 00800000 00400000
 RO_SECTION 00610000 00800000 001f0000
 BOOT_STUB 00700000 00800000 00100000
 GBB 00611000 00700000 000ef000
 RO_FRID_PAD 00610840 00611000 000007c0
 RO_FRID 00610800 00610840 00000040
 FMAP 00610000 00610800 00000800
 RO_UNUSED 00604000 00610000 0000c000
 RO_VPD 00600000 00604000 00004000
 RO_SI_ALL 00400000 00600000 00200000
 RO_SI_ME 00401000 00600000 001ff000
 RO_SI_DESC 00400000 00401000 00001000
 RW_UNUSED 003fe000 00400000 00002000
 RW_VPD 003fc000 003fe000 00002000
 RW_ENVIRONMENT 003f8000 003fc000 00004000
 RW_SHARED 003f4000 003f8000 00004000
 VBLOCK_DEV 003f6000 003f8000 00002000
 SHARED_DATA 003f4000 003f6000 00002000
 RW_ELOG 003f0000 003f4000 00004000
 RW_MRC_CACHE 003e0000 003f0000 00010000
 RW_SECTION_B 002f0000 003e0000 000f0000
 RW_FWID_B 003dffc0 003e0000 00000040
 FW_MAIN_B 00300000 003dffc0 000dffc0
 VBLOCK_B 002f0000 00300000 00010000
 RW_SECTION_A 00200000 002f0000 000f0000
 RW_FWID_A 002effc0 002f0000 00000040
 FW_MAIN_A 00210000 002effc0 000dffc0
 VBLOCK_A 00200000 00210000 00010000
SI_ALL 00000000 00200000 00200000
 SI_ME 00001000 00200000 001ff000
 SI_DESC 00000000 00001000 00001000
$

For example...

● Link has 2M of read-only BIOS
● Parrot has 4M of read-only BIOS

Link uses that extra 2M of read-write flash to
hold a copy of SeaBIOS.

Parrot uses it for a backup read-only copy of
the ME firmware. Although I don't think it's
actually present...

Agenda

Intro / Background
Chrome OS Firmware
Development System
Preparing a Test System
Hands On
What Next?

Basic system

● You'll need a 64-bit Linux distro

● I'm using Ubuntu 12.04.2 LTS. The package
names may vary in other distros.

● Add some generally useful packages:

sudo apt-get install \

git-core gitk git-gui subversion curl

Flashrom

● We'll need this when if things go wrong
● Download the latest tarball from http://www.

flashrom.org
● Install the prerequisite packages

sudo apt-get install \

build-essential zlib1g-dev libftdi-dev pciutils-dev

● Build it
make CONFIG_DEDIPROG=yes

sudo make install

● Note: Chromebooks have their own copy of flashrom too.
That is built slightly differently from the upstream.

http://www.flashrom.org
http://www.flashrom.org
http://www.flashrom.org

Coreboot
$ sudo apt-get install libncurses5-dev m4 bison flex iasl

$ git clone http://review.coreboot.org/p/coreboot.git
$ cd coreboot
$ make menuconfig

$ make

● If it works, it will create a file named

build/coreboot.rom

● I got errors the first time. This fixed it:
$ make clean
$ make crossgcc

$ make

"make menuconfig" selections
General Setup

Allow use of binary-only repository

Mainboard
Vendor Google
Model Parrot

Chipset
Add a System Agent Binary
Filename: 3rdparty/northbridge/intel/sandybridge/systemagent-r6.bin

VGA BIOS
Add a VGA BIOS
Filename: 3rdparty/mainboard/google/parrot/snm_2130_coreboot.bin

make menuconfig (continued)

Console
Disable Serial port console output
Enable USB 2.0 EHCI debug dongle support
Enable Send console output to a CBMEM buffer

Save and Exit

Coreboot alternate source

● For Chrome OS, changes are rapid
● If you're building for Chrome OS, you may

want to pull from the Chromium OS repo

$ git remote add cros-coreboot \

https://git.chromium.
org/git/chromiumos/third_party/coreboot

$ git branch --track cros \ remotes/cros-
coreboot/chromeos-2013.04

$ git checkout cros

$ make menuconfig

$ make

Agenda

Intro / Background
Chrome OS Firmware
Development System
Preparing a Test System
Hands On
What Next?

Which Chromebook?

● To date, 10 Chrome OS devices have
shipped

● Some don't use coreboot
● Some aren't x86-based
● Some use flush-mounted flash chips (so you

can't clip on to them)
● Costs and features vary

Acer C7 Chromebook (aka "Parrot")

● Minuses
○ Royal pain to open up
○ A little slow to boot

● Pluses
○ Relatively recent design
○ 8M flash, plenty of room to experiment
○ Flash chip can be clipped onto
○ Huge (for Chromebooks) 320GB hard drive
○ Under $200

Back up the original BIOS!

● Get a root shell (Developer Mode)
● Read your BIOS using flashrom to get the

VPD section, GBB bitmaps, etc.
● Extract the BIOS (and other stuff) from the

shellball to get the ME firmware.
● Copy the two BIOSes (orig_bios.bin and

bios.bin) SOMEWHERE ELSE.
● If you want to restore everything exactly,

you'll have to assemble the original image
from those two parts.

From the root shell:
mkdir /tmp/ho

cd /tmp/ho

flashrom -p internal:bus=spi -r orig_bios.bin

chromeos-firmwareupdate --sb_extract .

scp orig_bios.bin bios.bin USER@HOST:

● Or you can just read the entire BIOS flash
using a debugger. We'll go over that later.

Void your warranty

● The only way to disable the BIOS write
protection is to open up the machine.

● Unplug the charger and remove the battery
first, just to be safe

● To take the back off, remove the single
screw under the Warranty-Voiding sticker.

● Slide the back cover away from the battery
side about 1/8", and it should lift off.

FIXME: need better photos!

Yes, all the photos are horrible. I only had my
phone, in bad lighting. I'll replace them with better
ones as soon as I can.

- Bill

BIOS flash write protection

● First, the SPI EEPROM status register sets a
write protect range. EEPROM in this range
cannot be erased or written. The --wp-range
option to flashrom changes this setting.

● Second, the SPI EEPROM status register
can also protect the status register itself from
being changed. The --wp-enable and --wp-
disable options to flashrom change this
setting (which makes it kind of pointless, IMHO).

BIOS flash write protection

● Third, if the WP# pin on the SPI EEPROM
chip is asserted, the chip pays attention to
the status register protection bit.

● When WP# is asserted, the protection bit
can be set, but cannot be cleared.

● If WP# is deasserted, flashrom can write to
the status register even if --wp-enable is set.

● The state of WP# is controlled by a physical
connection. Each model of Chromebook is
slightly different - on Parrot, it's a jumper.

Disable Write Protection

● First, make a note of the current settings.
The range varies among Chromebooks.

● Connect the charger, turn it on, and get a
root shell.

● flashrom will display the settings:

localhost ~ # flashrom -p internal:bus=spi --wp-status

WP: status: 0x98
WP: status.srp0: 1
WP: write protect is enabled.
WP: write protect range: start=0x00400000, len=0x00400000

localhost ~ #

Disable Write Protection

● Check WP# using the crossystem command
● The last two lines show the state at boot and

the current value
wpsw_boot = 1
wpsw_cur = 1

● Put a screw or paperclip into the jumper and
wiggle it around while running crossystem
until you see

wpsw_boot = 1
wpsw_cur = 0

Disable Write Protect

● Once WP# is deasserted, run

flashrom -p internal:bus=spi --wp-disable
flashrom -p internal:bus=spi --wp-range 0 0

● Verify that it's disabled with

flashrom -p internal:bus=spi --wp-status

Reenable Write Protect (but not now)

● You can stop fiddling with the jumper
● Just don't change the value with flashrom,

and it will stay unprotected
● If you do want to reenable it, just run

flashrom -p internal:bus=spi \

--wp-range 0x00400000 0x00400000

flashrom -p internal:bus=spi --wp-enable

● You don't need to disable WP# to enable
write protection. It's a one-way operation.

Now you're ready to brick your
Chromebook

● Copy your newly-built coreboot.rom file to the
Chromebook

● Replace the BIOS firmware

flashrom -p internal:bus=spi -w coreboot.rom

● And reboot

Huh

● It didn't work, did it?

● Nuts.

● Now what?

What went wrong?

● You chose an invalid setting in the coreboot
configuration

● You're missing some vital binary blobs
● Coreboot has a bug in it
● A nearly infinite number of other things

● Firmware is tricky like that

How can we make it work again?

● We need to use an external programmer to
replace the borked BIOS with a good one.
○ I've only used the Dediprog SF100 (http://www.

dediprog.com)
○ Other solutions might also work (Bus Pirate, etc.)

● Now we'll really have to take things apart

http://www.dediprog.com
http://www.dediprog.com
http://www.dediprog.com

A brief digression...

● Some Chromebooks (Parrot, for example)
use flash chips that are easy to clip on to.

● Others use low-profile or surface-mount
chips that are much trickier, or that may
require soldering.

● Some models use custom ribbon cables and
circuit boards to expose JTAG and other
signals. We don't even try to use a Dediprog
on those.

● You should probably check some teardown
sites before you buy one to play with.

Disconnect the hard drive

● You've probably noticed that the hard drive
tends to flop around a lot.

● Unlock the ribbon cable and remove the
drive.

● The ribbon connector has a bar that moves
towards the cable to unlock, or towards the
connector to lock.

● The cable has a line painted on it to help you
tell when it's fully inserted.

How the connector works

Trackpad cable

● The trackpad cable uses the same type of
connector as the hard drive.

● It's easier to just leave it connected, but it's
pretty short.

● Be very careful not to yank it out
accidentally.

Getting at the flash chip

● The BIOS flash chip is conveniently located
on the other side of the motherboard.

● There are about 18 screws to remove.
● There are at least four tricky ones:

○ There's one tiny screw near the edge that doesn't
look big enough to matter. It does.

○ There are two on the fan mount.
○ The screw that holds the WiFi module in has to be

removed also. That was my favorite.

Getting at the flash chip

● Once all the screws are removed you can
carefully and gently pry the edges apart.

● There are lots of tiny plastic catches, all
along the edges. Patience and a sharp
screwdriver are required.

● If the two halves are not separating easily,
you've probably missed a screw.

● There are still some ribbon cables attaching
the keyboard to the motherboard. Rotate the
keyboard underneath once it's free.

Reflash the BIOS

● Use the Dediprog to put a valid BIOS back
on the system.

● You can use flashrom on your development
machine to do that.

$ sudo flashrom -p dediprog -w bios.bin

Wait, which BIOS do I restore?

● The Chrome OS BIOS arguably has two
read-only sections.

● This is a side-effect of Intel's Management
Engine ("ME") stuff.

● The x86 CPU fetches its first instruction from
high memory, so that part of the BIOS flash
needs to be read-only.

● We ensure this with WP#.
● The FMAP region named BOOT_STUB contains

that code (coreboot, yay).

Wait, which BIOS do I restore?

● But the ME executes its firmware before the
CPU starts.

● If the ME firmware is missing or corrupted,
the CPU will never come out of reset.

● We'd like the ME firmware to be read-only.
● But the ME firmware has to be located in the

writable part of flash, so it can write to it at
random times.

● To protect itself, the SPI controller hides the
ME region from the CPU.

Wait, which BIOS do I restore?

● By the time the kernel boots, the ME's
portion of the writeable BIOS flash is
inaccessible to the CPU via the SPI bus.

● So when we created our backup copies from
the root shell, the ME section is blank
(flashrom ignores the errors and returns 0xFF).

● The "shellball", which is used to restore or
update the BIOS, contains the original ME
firmware.

Wait, which BIOS do I restore?

● The shellball doesn't contain your original
RO_VPD or GBB sections, since those are
updated during manufacturing.

● RO_VPD has things like part numbers that are
mostly used for warranty service.

● GBB contains the BIOS bitmaps displayed in
Developer or Recovery mode.

● Since we're writing the entire BIOS flash, we
want to use the one from the shellball that
has the ME firmware.

One more thing...

● The ME can still interfere with the Dediprog.

● You'll need to unplug the charger in order for
the Dediprog to erase the entire BIOS flash.

● Once you've reflashed the BIOS, it should
work again.

$ sudo flashrom -p dediprog -w bios.bin

How do we debug?

● What we need is a serial port.
● What we've got is ... uh...
● Because Chromebooks aren't PCs, they

don't have the "standard" LPC connectors
that can access the traditional UARTs.

● You'd think a mini-PCIe serial adapter in the
WiFi socket would work, but it doesn't.

● We've had the most luck with USB host-to-
host debugging adapters.

How do we debug

● Those are the USB equivalents of a null-
modem cable. Each end sees a USB serial
adapter.

● But it only works when both USB ports are
powered.

● When the Chromebook is off, so is its USB
port, so the development system can't see it.

● Usually, if you start minicom while
/dev/ttyUSB0 is active, it will complain when
it's gone, but will still work when it comes
back.

USB

coreboot-4.0-4428-g4 PDT 2013 starting...
Setting up static southbridge registers... done.
Disabling Watchdog reboot... done.
Setting up static northbridge registers... done.
Initializing Graphics...
Back from sandybridge_early_initialization()
SMBus controller enabled.
CPU id(206a7): Intel(R) Celeron(R) CPU 847 @ 1.10GHz
AES NOT supported, TXT NOT supported, VT supported
PCH type: NM70, device id: 1e5f, rev id 4
Intel ME early init
Intel ME firmware is ready
ME: Requested 16MB UMA
Starting UEFI PEI System Agent
REC MODE GPIO 68: 0
Read scrambler seed 0x00007d92 from CMOS 0x98
Read S3 scrambler seed 0x00004a81 from CMOS 0x9c
No FMAP found at ffe10000.
FMAP: area RW_MRC_CACHE not found

Example output from a bad BIOS

Agenda

Intro / Background
Chrome OS Firmware
Development System
Preparing a Test System
Hands On
What Next?

Let's do it!

● We have:
○ A Parrot, already disassembled
○ A laptop with a fresh Ubuntu install
○ A Dediprog
○ A USB debugger
○ Helpful instructors

● Y'all build your own BIOSes, and we'll try
them out on our Parrot first.

Agenda

Intro / Background
Chrome OS Firmware
Development System
Preparing a Test System
Hands On
What Next?

Duh. What did you think I'd say?

● Keep hacking

● Submit patches

● Get involved
○ http://www.coreboot.org
○ http://www.chromium.org

http://www.coreboot.org
http://www.coreboot.org
http://chromium.org
http://chromium.org

Backup material

vboot_reference tools

● There are several utilities for poking at the
BIOS that are part of the verified boot
sources. Build them like so:

sudo apt-get install libssl-dev uuid-dev liblzma-dev libyaml-dev libtspi-dev

git clone https://git.chromium.org/git/chromiumos/platform/vboot_reference

cd vboot_reference

make

sudo make install

